
Code Security Assessment

Kromatika.Finance
Feb 10th, 2022

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
KROM-01 : Centralization Risk

KROM-02 : Third Party Dependencies

KROM-03 : Missing Emit Events

KROM-04 : Return Value Ignored

KROM-05 : Unlocked Compiler Version

KROM-06 : Initialize Functions Lack Restrictions

KCK-01 : Centralization Related Risks

LOC-01 : Missing Requirement

LOC-02 : Missing Error Messages

LOC-03 : Missing Input Validations

LOK-01 : Missing Error Messages

LOK-02 : Potential Sandwich Attacks

LOK-03 : Unsafe Integer Cast

LOM-01 : Missing Error Messages

LOM-02 : Critical State Variable Not Updated When Transferring ERC721 Tokens

LOM-03 : Incorrect `require` Statement

LOM-04 : Proper Usage of `require` And `assert` Functions

LOM-05 : Proper `monitors` Initialization

LOM-06 : Unsafe Implicit Integer Casting

LOM-07 : Integer Overflow Risk

LOM-08 : Not Collecting Fees Earned in Uniswap V3 Pools

UUC-01 : Missing Error Messages

UUC-02 : Potential Oracle Manipulation

UUC-03 : Potential Price Manipulation

UUC-04 : Assumption of Possitive Tick Spacing

UUC-05 : Redundant `import` Files

UUC-06 : Integer Overflow/Underflow Risk

Kromatika.Finance Code Security AssessmentKromatika.Finance Code Security Assessment

UUC-07 : Proper Usage of `require` And `assert` Functions

Appendix

Disclaimer

About

Kromatika.Finance Code Security Assessment

Summary
This report has been prepared for Kromatika.Finance to discover issues and vulnerabilities in the source

code of the Kromatika.Finance project as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Static Analysis and

Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Kromatika.Finance Code Security Assessment

Overview

Project Summary

Project Name Kromatika.Finance

Description ERC20

Platform Ethereum

Language Solidity

Codebase https://github.com/Kromatika-Finance/limit-trade

Commit

Audit Summary

Delivery Date Feb 10, 2022

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Mitigated Resolved

Critical 1 0 0 0 0 0 1

Major 5 0 0 0 2 1 2

Medium 1 0 0 0 0 0 1

Minor 5 0 0 3 0 0 2

Informational 16 0 0 0 1 0 15

Discussion 0 0 0 0 0 0 0

Kromatika.Finance Code Security Assessment

https://github.com/Kromatika-Finance/limit-trade

Audit Scope

ID File SHA256 Checksum

IOM interfaces/IOrderManager.sol 1d5d6401b3495196567c087e76c3d1f78d62160abd65b7b14a55d1ae51404112

IOC interfaces/IOrderMonitor.sol 07e94691c24eebb7ed8c4597145497dce8d3f6d00628075cafa60f6829bedac3

KCK Kromatika.sol f71055085b3b2897162d52f7ff4303895ece2a3d3b02bd83b7c1d1881eec0089

LOM LimitOrderManager.sol 6bb817a6b9db2cc06c7b4304df34bc1958e00b0698b066f6adcc2eaf8e20ad6e

LOC LimitOrderMonitor.sol 2ee929033115478e8f7b18484a601b0dcbdd3efca5ce913069352dfb09559239

LOK LimitOrderMonitorChainlink.sol 17007360aa95f8c008ae9bb20d1bb64252aec0654228091ee8e71067419cb744

MCK Multicall.sol 8cef9083060ace60ade8d906612c00107ce4c7745c7987df7f4ace64c7afee6c

REA README.md 11f5e6619d80dfb4297702c67ff64d025e707d6e4092a25e972626f92976d314

SPC SelfPermit.sol 5535333864d2ff5d583555f0293c9ad0eb1c6784e2303490500e201b5e05ec8e

UUC UniswapUtils.sol 46386874ece66de48f1ff839a2975829dd0ed7ec47b94559475b01c10355d62f

Kromatika.Finance Code Security Assessment

Understandings

Overview

Dependencies

There are a few depending injection contracts or addresses in the current project:

factory , WETH , KROM , IUniswapV3Pool(limitOrder.pool) , and limitOrder.monitor for contract

LimitOrderManager ;

orderManager , factory , and KROM for the contract LimitOrderMonitor ;

orderManager , factory , KROM , swapRouter , LINK , and WETH for the contract

LimitOrderMonitorChainlink .

We assume these contracts or addresses are valid and non-vulnerable actors and implement proper logic

to collaborate with the current project.

Privilledged Functions

In the contract LimitOrderManager , the role owner() has the authority over the following functions:

setMonitors()

setMarginGasUsageMultiplier() The role monitor has the authority over the following functions:

processLimirOrder()

In the contract LimitOrderMonitor , the role owner() has the authority over the following functions:

setBatchSize()

setMonitorSize()

setUpkeepInterval()

setKeeperFee() The role orderManager has the authority over the following functions:

startMonitor()

stopMonitor()

Kromatika.Finance Code Security Assessment

In the contract LimitOrderMonitorChainlink , the role owner() has the authority over the following

function:

setKeeperId()

To improve the trustworthiness of the project, any dynamic runtime updates in the project should be

notified to the community. Any plan to invoke the aforementioned functions should be also considered to

move to the execution queue of the Timelock contract.

Kromatika.Finance Code Security Assessment

Findings

ID Title Category Severity Status

KROM-01 Centralization Risk
Centralization /

Privilege
Major Partially Resolved

KROM-02 Third Party Dependencies Volatile Code Minor Acknowledged

KROM-03 Missing Emit Events Coding Style Informational Resolved

KROM-04 Return Value Ignored Volatile Code Informational Resolved

KROM-05 Unlocked Compiler Version Language Specific Informational Resolved

KROM-06 Initialize Functions Lack Restrictions Logical Issue Informational Partially Resolved

KCK-01 Centralization Related Risks
Centralization /

Privilege
Major Mitigated

LOC-01 Missing Requirement Logical Issue Informational Resolved

LOC-02 Missing Error Messages Coding Style Informational Resolved

LOC-03 Missing Input Validations Volatile Code Medium Resolved

LOK-01 Missing Error Messages Coding Style Informational Resolved

LOK-02 Potential Sandwich Attacks Logical Issue Major Resolved

LOK-03 Unsafe Integer Cast Logical Issue Minor Resolved

LOM-01 Missing Error Messages Coding Style Informational Resolved

Kromatika.Finance Code Security Assessment

28
Total Issues

Critical 1 (3.57%)

Major 5 (17.86%)

Medium 1 (3.57%)

Minor 5 (17.86%)

Informational 16 (57.14%)

Discussion 0 (0.00%)

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639508349517
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639670115473
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639519076756
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639585538827
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642263754044
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642310554340
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639420391341
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639679700769
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=16422638294640
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642476879037
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=16422638294640
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642403057266
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642485127582
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=16422638294640

ID Title Category Severity Status

LOM-02
Critical State Variable Not Updated When

Transferring ERC721 Tokens
Logical Issue Critical Resolved

LOM-03 Incorrect require Statement Logical Issue Minor Resolved

LOM-04
Proper Usage of require And assert

Functions
Coding Style Informational Resolved

LOM-05 Proper monitors Initialization Logical Issue Informational Resolved

LOM-06 Unsafe Implicit Integer Casting Volatile Code Informational Resolved

LOM-07 Integer Overflow Risk
Mathematical

Operations
Informational Resolved

LOM-08
Not Collecting Fees Earned in Uniswap V3

Pools
Logical Issue Minor Acknowledged

UUC-01 Missing Error Messages Coding Style Informational Resolved

UUC-02 Potential Oracle Manipulation Logical Issue Major Partially Resolved

UUC-03 Potential Price Manipulation Logical Issue Major Resolved

UUC-04 Assumption of Possitive Tick Spacing Logical Issue Minor Acknowledged

UUC-05 Redundant import Files Coding Style Informational Resolved

UUC-06 Integer Overflow/Underflow Risk
Mathematical

Operations
Informational Resolved

UUC-07
Proper Usage of require And assert

Functions
Coding Style Informational Resolved

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642543363603
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639774706292
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642313941416
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642351831133
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642485839649
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642486008688
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642400173076
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=16422638294640
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642272134814
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642299988435
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642289042283
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639687597480
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642271703964
https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642271862519

KROM-01 | Centralization Risk

Category Severity Location Status

Centralization / Privilege Major Global Partially Resolved

Description

In the contract LimitOrderManager , the role owner() has the authority over the following functions:

setMonitors()

setMarginGasUsageMultiplier()

In the contract LimitOrderMonitor , the role owner() has the authority over the following functions:

setBatchSize()

setMonitorSize()

setUpkeepInterval()

setKeeperFee()

In the contract LimitOrderMonitor , the role orderManager has the authority over the following functions:

startMonitor()

stopMonitor()

In the contract LimitOrderMonitorChainlink , the role owner() has the authority over the following

function:

setKeeperId()

Any compromise to the owner() or orderManager accounts may allow the hacker to take advantage of

these functions.

Recommendation

We advise the client to carefully manage the owner() and orderManager accounts's private key to avoid

any potential risks of being hacked. In general, we strongly recommend centralized privileges or roles in

the protocol to be improved via a decentralized mechanism or smart-contract-based accounts with

enhanced security practices, e.g., Multisignature wallets.

Indicatively, here are some suggestions that would mitigate the potential risk in the short-term and long-

term:

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639508349517

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

[Kromatika Team]: Kromatika uses a Gnosis safe 3-4 multisignature wallet that will hold the privileged role

to change the parameters of the corresponding smart contracts in a decentralized way. Later on Kromatika

plans on introducing a governance module to transfer the privileges to the DAO.

Kromatika.Finance Code Security Assessment

https://etherscan.io/address/0xc5bf7a684a0dfca02a1e603b1d27af0af523a54f#code

KROM-02 | Third Party Dependencies

Category Severity Location Status

Volatile Code Minor Global Acknowledged

Description

The contract is serving as the underlying entity to interact with third party UniSwap V3 and Chainlink

protocols. The scope of the audit treats 3rd party entities as black boxes and assume their functional

correctness. However, in the real world, 3rd parties can be compromised and this may lead to lost or

stolen assets. In addition, upgrades of 3rd parties can possibly create severe impacts, such as increasing

fees of 3rd parties, migrating to new LP pools, etc.

Recommendation

We understand that the business logic of Kromatika Finance requires interaction with UniSwap and

Chainlink. We encourage the team to constantly monitor the statuses of 3rd parties to mitigate the side

effects when unexpected activities are observed.

Alleviation

[Kromatika Team]: Kromatika will use a third party monitoring service (OpenZepellin Defender) for

monitoring theactivities of 3rd parties.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639670115473

KROM-03 | Missing Emit Events

Category Severity Location Status

Coding Style Informational Global Resolved

Description

The function that affects the status of sensitive variables should be able to emit events as notifications. In

the contract LimitOrderManager :

initialize() which sets marginGasUsageMultiplier

setMarginGasUsageMultiplier() which sets marginGasUsageMultiplier

In the contract LimitOrderMonitor :

setBatchSize() which sets batchSize

setMonitorSize() which sets monitorSize

setUpkeepInterval() which sets upkeepInterval

setKeeperFee() which sets monitorFee

startMonitor() which starts monitor for a tokenID

stopMonitor which stops monitor for a tokenID

In the contract LimitOrderMonitorChainlink :

setKeeperId() which sets keeperId

Recommendation

Consider adding events for sensitive actions, and emit them in the function.

Alleviation

[Kromatika Team]: he team has applied a fix for this issue: https://github.com/Kromatika-Finance/limit-

trade/commit/1ea8112beb6663dc69d841e846c95d118043939b

The following events have been added:

LimitOrderManager

GasUsageMonitorChangedLimitOrderMonitor

BatchSizeChanged

MonitorSizeChanged

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639519076756
https://github.com/Kromatika-Finance/limit-trade/commit/1ea8112beb6663dc69d841e846c95d118043939b

UpkeepIntervalChanged

MonitorStarted

MonitorStopped

Kromatika.Finance Code Security Assessment

KROM-04 | Return Value Ignored

Category Severity Location Status

Volatile Code Informational Global Resolved

Description

In the contract LimitOrderManager , the functions WETH.transfer() , _pool.mint() , _collect() and

CallbackValidation.verifyCallback() , and in the contract LimitOrderMonitor the function

KROM.approve() invocations do not check the return value of the function call which should yield

respective values in case of a proper call.

Recommendation

We recommend adding appropriate return value checks to ensure that the function calls are successful.

Alleviation

[Kromatika Team]: The team has applied a fix for this issue: https://github.com/Kromatika-Finance/limit-

trade/commit/f4f3fe05ee957e0926e18f94924be0db6def04c5All the recommended possible checks have

been validated with require call.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639585538827
https://github.com/Kromatika-Finance/limit-trade/commit/f4f3fe05ee957e0926e18f94924be0db6def04c5All

KROM-05 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational Global Resolved

Description

The contract has unlocked compiler version. An unlocked compiler version in the source code of the

contract permits the user to compile it at or above a particular version. This, in turn, leads to differences in

the generated bytecode between compilations due to differing compiler version numbers. This can lead to

an ambiguity when debugging as compiler specific bugs may occur in the codebase that would be hard to

identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.6.2 the contract should contain the following line:

pragma solidity 0.6.2;pragma solidity 0.6.2;

Alleviation

[Kromatika Team]: With the fix commit: 9d0e681aec381aef07b1e09fd7b1ed25db96b595all smart

contracts have been locked to using compiler version pragma solidity 0.7.6; Additionally, Kromatika

uses truffle framework that locks the solidity compiler to version 0.7.6 (in file truffle-config.js)

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642263754044
https://github.com/Kromatika-Finance/limit-trade/commit/9d0e681aec381aef07b1e09fd7b1ed25db96b595

KROM-06 | Initialize Functions Lack Restrictions

Category Severity Location Status

Logical Issue Informational Global Partially Resolved

Description

The following contracts have configure or initialize functions that can be called by anyone:

LimitOrderManager

LimitOrderMonitor

LimitOrderMonitorChainlink

This allows attackers to potentially front-run initialization transactions and manipulate sensitive variables.

Recommendation

Consider placing restrictions on who is able to properly initialize these contracts.

Alleviation

[Kromatika Team]: Kromatika uses an OpenZepellin TransparentUpgradableProxy that creates a proxy

contract for the logic contracts:

LimitOrderManager

LimitOrderMonitor

LimitOrderMonitorChainlink

UpgradableProxy initializes the proxy contract within the same transaction in the constructor. Thus, the

initialization transaction happens within the same proxy contract deployment transaction and can be

executed only once. Kromatika is using OpenZepellin truffle upgrades plugin for creating upgradable

proxies with initialization logic.

Update (Jan31 th 2022): Kromatika team with the commit:

344165e12eb1e0c9a60781a7984e061dc3867d02has also added a constructor for its implementations

contracts to automatically mark them as initialized when deployed, so that the initialize() method cannot be

called again

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642310554340
https://github.com/Kromatika-Finance/limit-trade/commit/344165e12eb1e0c9a60781a7984e061dc3867d02

KCK-01 | Centralization Related Risks

Category Severity Location Status

Centralization / Privilege Major Kromatika.sol: 11 Mitigated

Description

All of the KROM tokens are sent to the contract deployer when deploying the contract. This could be a

centralization risk as the deployer can distribute KROM tokens without obtaining the consensus of the

community.

Recommendation

We recommend the team to be transparent regarding the initial token distribution process, and the team

shall make enough efforts to restrict the access of the private key.

Alleviation

[Kromatika Team]: Immediately after the KROM token distribution, 20% of the KROM token has been

locked in the Gnosis safe 3-4 multisignature wallet and 80% distributed on DEXes as initial dex liquidity.

The deployer account does not keep any of the initial KROM token distribution

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639420391341
https://etherscan.io/address/0xc5bf7a684a0dfca02a1e603b1d27af0af523a54f#code

LOC-01 | Missing Requirement

Category Severity Location Status

Logical Issue Informational LimitOrderMonitor.sol: 160 Resolved

Description

In the contract LimitOrderMonitor , the function performUpkeep unpacks an uint array _tokenIds and

uint count from the input data but does not verify that the _tokenIds.length is greater than or equal to

count to ensure that the array can be properly accessed when looping through.

Recommendation

We recommend including the following check:

requirerequire((_count _count ==<< _tokenIds _tokenIds..lengthlength));;

Alleviation

[Kromatika Team]: The team has applied a fix for this issue: https://github.com/Kromatika-Finance/limit-

trade/commit/70b2706e9646179d58cb7fa100d6f669631719f9

Adding line

requirerequire((_count _count <=<= _tokenIds _tokenIds..lengthlength));;

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639679700769
https://github.com/Kromatika-Finance/limit-trade/commit/70b2706e9646179d58cb7fa100d6f669631719f9

LOC-02 | Missing Error Messages

Category Severity Location Status

Coding Style Informational LimitOrderMonitor.sol: 179, 185 Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is

better to provide a string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[Kromatika Team]: With the fix commit: b67ce36a150adaaa992e6810cd4bb84272552e46, Kromatika

team have added short error messages to all require statements

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=16422638294640
https://github.com/Kromatika-Finance/limit-trade/commit/b67ce36a150adaaa992e6810cd4bb84272552e46

LOC-03 | Missing Input Validations

Category Severity Location Status

Volatile Code Medium LimitOrderMonitor.sol: 149~151 Resolved

Description

As pointed out by the Chainlink team from the chainlink github, the input to the function

LimitOrderMonitor.performUpdate should not be trusted, and the caller of the method should not even

be restricted to any single registry. Anyone should be able to call it, and the input should be validated,

there is no guarantee that the data passed in is the performData returned from

LimitOrderMonitor.checkUpkeep() .

This could happen due to malicious keepers, racing keepers, or simply a state change while the

LimitOrderMonitor.performUpkeep() transaction is waiting for confirmation.

For example, a malicious keeper may simply guess a few _tokenId and pass them into the

LimitOrderMonitor.performUpkeep() function. If at least one of the _tokenId indeed needs to be up-

kept, this function would finish successfully, and lastUpkeep will be updated. Then, the good keepers will

not be able to perform the right LimitOrderMonitor.checkUpkeep() due to the fact that lastUpkeep ==

block.number and further they can't pass in the right input into LimitOrderMonitor.performUpkeep()

function.

Recommendation

The audit team advise adding enough validations for the passed-in values to prevent unexpected errors.

Alleviation

[Kromatika Team]: With the commit fix: 4099bf1f630dcbc9d1a2784e4726ae98b465a57f Kromatika team

has added additional input validation check in regarding the _tokenIds and _count checks related to

batchSize . In order to prevent malicious keepers guessing _tokenId , with commit:

b9ffed3cf2868705a53072a90bb8a0729f8e7380, Kromatika team has also removed the lastUpkeep and

will check for upkeeps every block

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642476879037
https://github.com/smartcontractkit/keeper/blob/master/contracts/KeeperCompatibleInterface.sol
https://github.com/Kromatika-Finance/limit-trade/commit/4099bf1f630dcbc9d1a2784e4726ae98b465a57f
https://github.com/Kromatika-Finance/limit-trade/commit/b9ffed3cf2868705a53072a90bb8a0729f8e7380

LOK-01 | Missing Error Messages

Category Severity Location Status

Coding Style Informational LimitOrderMonitorChainlink.sol: 58 Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is

better to provide a string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[Kromatika Team]: With the fix commit: b67ce36a150adaaa992e6810cd4bb84272552e46, Kromatika

team have added short error messages to all require statements

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=16422638294640
https://github.com/Kromatika-Finance/limit-trade/commit/b67ce36a150adaaa992e6810cd4bb84272552e46

Kromatika.Finance Code Security Assessment

LOK-02 | Potential Sandwich Attacks

Category Severity Location Status

Logical Issue Major LimitOrderMonitorChainlink.sol: 62~72 Resolved

Description

A sandwich attack might happen when an attacker observes a transaction swapping tokens or adding

liquidity without setting restrictions on slippage or minimum output amount. The attacker can manipulate

the exchange rate by frontrunning (before the transaction being attacked) a transaction to purchase one of

the assets and make profits by backrunning (after the transaction being attacked) a transaction to sell the

asset.

The following functions are called without setting restrictions on slippage or minimum output amount, so

transactions triggering these functions are vulnerable to sandwich attacks, especially when the input

amount is large:

6262 ISwapRouter ISwapRouter..ExactInputParams ExactInputParams memorymemory params params ==
6363 ISwapRouter ISwapRouter..ExactInputParamsExactInputParams(({{
6464 path path:: abi abi..encodePackedencodePacked((addressaddress((KROMKROM)),, POOL_FEE POOL_FEE,, addressaddress((WETHWETH)),,

POOL_FEEPOOL_FEE,, addressaddress((LINKLINK)))),,
6565 recipient recipient:: addressaddress((thisthis)),,
6666 deadline deadline:: block block..timestamptimestamp,,
6767 amountIn amountIn:: _amount _amount,,
6868 amountOutMinimum amountOutMinimum:: 00
6969 }}));;
7070
7171 // swap and send// swap and send
7272 _amount _amount == swapRouter swapRouter..exactInputexactInput((paramsparams));;

Recommendation

We recommend setting reasonable minimum output amounts, instead of 0, based on token prices when

calling the aforementioned functions.

Alleviation

[Kromatika Team]: With the fix commit: 18f7694701e81a5571c78659b1092dc2d4855b60, Kromatika

team has removed the sandwich attack code considering it as an obsolete / unnecessary feature. The

swapping and replenishment of Chainlink keepers will be done by an Externally Owned Account(EOA)

managed automatically by a third party OpenZepellin Depender.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642403057266
https://github.com/Kromatika-Finance/limit-trade/commit/18f7694701e81a5571c78659b1092dc2d4855b60

Kromatika.Finance Code Security Assessment

LOK-03 | Unsafe Integer Cast

Category Severity Location Status

Logical Issue Minor LimitOrderMonitorChainlink.sol: 75 Resolved

Description

The linked statements cast a uint256 value to an uint96 without evaluating its bounds.

Recommendation

The audit team advise a safe casting operation to be performed by ensuring the result is correct.

Alleviation

[Kromatika Team]: With the fix commit: 18f7694701e81a5571c78659b1092dc2d4855b60, Kromatika

team has removed code that was containing the unsafe cast operation.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642485127582
https://github.com/Kromatika-Finance/limit-trade/commit/18f7694701e81a5571c78659b1092dc2d4855b60

LOM-01 | Missing Error Messages

Category Severity Location Status

Coding

Style
Informational

LimitOrderManager.sol: 159, 188, 189, 210, 238, 280, 293, 331, 405, 492,

505, 542, 554, 609
Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is

better to provide a string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[Kromatika Team]: With the fix commit: b67ce36a150adaaa992e6810cd4bb84272552e46, Kromatika

team have added short error messages to all require statements

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=16422638294640
https://github.com/Kromatika-Finance/limit-trade/commit/b67ce36a150adaaa992e6810cd4bb84272552e46

LOM-02 | Critical State Variable Not Updated When Transferring ERC721

Tokens

Category Severity Location Status

Logical Issue Critical LimitOrderManager.sol: 26~32 Resolved

Description

The LimitOrderManager is an ERC721Upgradeable which mints ERC721 tokens to represent limit orders.

Since the ERC721 tokens are transferrable, users may transfer their tokens to others. However, when

transferring the tokens, the critical state variable activeOrders is not updated accordingly. The

activeOrder is a mapping from the token owner's address to the number of active orders the owner has.

Without correctly updating this critical variable activeOrders , the following consequences may happen:

processLimitOrder() may experience denial of service due to the failure of SafeMath operations on

line 222 activeOrders[_owner] = activeOrders[_owner].sub(1) ;

the new token owner may not be able to cancel the limit in cancelLimitOrder() due to the failure of

SafeMath operations on line 255;

the fee calculated by the function estimateServiceFee(targetGasPrice[msg.sender],

activeOrders[msg.sender]) would be incorrect;

the function isUnderfunded may return an incorrect boolean because of the incorrect result from

estimateServiceFee() ;

_createLimitOrder would also be affected by erroneously setting the activeOrders .

Recommendation

The audit team recommend updating the aforementioned the state variable when transferring ERC721

tokens.

Alleviation

[Kromatika Finance]: With the fix commit: [48eb64cedb84322f79365e253f275682fedb5481] Kromatika

team has fixed the issue. Now the activeOrders are updated whenever there is a valid transfer of the NFT

tokenId between from and to address and the tokenId is still active i.e limit order represented by that

token is still not processed.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642543363603

LOM-03 | Incorrect require Statement

Category Severity Location Status

Logical Issue Minor LimitOrderManager.sol: 293 Resolved

Description

In the contract LimitOrderManager , the function withdrawFunding() checks to ensure that the account

has enough funding balance to satisfy reservedServiceFee . However, the require statement checks

the balance without accounting for the withdrawal amount, resulting in an account potentially unable to

satisfy the reservedServiceFee .

Recommendation

We recommend the following requirement:

requirerequire((balance balance -- _amount _amount >=>= reservedServiceFee reservedServiceFee));;

Alleviation

[Kromatika Team]: This is a logical issue and we have removed the reserved service fees concept

completely, making this issue non relevant. The users will no longer have a reserved service fee and they

can withdraw any _amount up to the balance , making this check unnecessary.

https://github.com/Kromatika-Finance/limit-

trade/blob/1ea8112beb6663dc69d841e846c95d118043939b/contracts/LimitOrderManager.sol

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639774706292
https://github.com/Kromatika-Finance/limit-trade/blob/1ea8112beb6663dc69d841e846c95d118043939b/contracts/LimitOrderManager.sol

LOM-04 | Proper Usage Of require And assert Functions

Category Severity Location Status

Coding Style Informational LimitOrderManager.sol: 554 Resolved

Description

The assert() function should only be used to test for internal errors, and to check invariants since the gas

fee will not be refunded. The require() function should be used to ensure valid conditions, such as

inputs, or contract state variables are met, or to validate return values from calls to external contracts.

Recommendation

Consider using the require() function, along with a custom error message when the condition fails,

instead of the assert function.

Alleviation

[Kromatika Team]: With the fix commit: 66e112989600f8ff0b08dbb05de9c193d3ecf02f, Kromatika team

has replaced assert() with require() function with a custom message.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642313941416
https://github.com/Kromatika-Finance/limit-trade/commit/66e112989600f8ff0b08dbb05de9c193d3ecf02f

LOM-05 | Proper monitors Initialization

Category Severity Location Status

Logical Issue Informational LimitOrderManager.sol: 542 Resolved

Description

When users create limit order, the corresponding monitor needs to be selected. In the function

LimitOrderManager._selectMonitor() , it requires the monitors.length > 0 .

541541 uint256uint256 monitorLength monitorLength == monitors monitors..lengthlength;;
542542 requirerequire((monitorLength monitorLength >> 00));;

However, the monitors is not properly initialized in the initialize() but only in the

LimitOrderManager.setMonitors() . In the case of improper initialization, users may experience Denial of

Service.

Recommendation

The audit team recommend ensuring the proper initialization of the monitors .

Alleviation

[Kromatika Team]: With the fix commit: f1779c8dd6f824425062c003bfbd70f993748d4d, Kromatika team

has initialized the monitors within the contract initialization function.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642351831133
https://github.com/Kromatika-Finance/limit-trade/commit/f1779c8dd6f824425062c003bfbd70f993748d4d

LOM-06 | Unsafe Implicit Integer Casting

Category Severity Location Status

Volatile Code Informational LimitOrderManager.sol: 175 Resolved

Description

The nextId is type uint176 and _tokenId is uint256 , and an implicit integer cast is accomplished on

line 175.

175175 _mint_mint((msgmsg..sendersender,, ((_tokenId _tokenId == nextId nextId++++))));;

The operation is supported in this version of Solidity, but may not be supported in a future version, and

using implicit integer casting may make the code more prone to errors.

Recommendation

The audit team recommend using explicit integer casting or declare the nextId to be uint256 .

Alleviation

[Kromatika Finance]: With the commits: 348bcfe15f0d56710770d5c57d5efd561bf59d17 and

c331abb74acc96fd67521aee61a9d4965b060e26, the team has updated the nextId to uint256.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642485839649
https://github.com/Kromatika-Finance/limit-trade/commit/348bcfe15f0d56710770d5c57d5efd561bf59d17
https://github.com/Kromatika-Finance/limit-trade/commit/c331abb74acc96fd67521aee61a9d4965b060e26

LOM-07 | Integer Overflow Risk

Category Severity Location Status

Mathematical Operations Informational LimitOrderManager.sol: 175 Resolved

Description

Using + in the method directly to calculate the value of the variable may overflow. SafeMath provides a

method to verify overflow, and it is safer to use the method provided.

Recommendation

Consider using the add() function in SafeMath library for mathematical operations.

Alleviation

[Kromatika Team]: With the fix commits: 361742b7a88f211e5bd2a5e2a76a0dd3ab2eae87, Kromatika

team has introduced SafeCast and SafeMath libraries from OpenZepellin for safe mathematical and

casting operations over uint256, uin128 and uint32 types used in the contract.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642486008688
https://github.com/Kromatika-Finance/limit-trade/commit/361742b7a88f211e5bd2a5e2a76a0dd3ab2eae87

LOM-08 | Not Collecting Fees Earned In Uniswap V3 Pools

Category Severity Location Status

Logical Issue Minor LimitOrderManager.sol: 265 Acknowledged

Description

When users burn their limit order token and collect the corresponding token pairs, the function

LimitOrderManager.collect() is called, which further calls the function pool.collect() . However,

pool.collect() does not recompute fees earned, which must be done either via mint or burn of any

amount of liquidity. In contrast, users can call LimitOrderManager.cancelLimitOrder() to cancel their

order and withdraw their tokens where the burn of liquidity is done via pool.burn() that updates the pool

status, adding the fees to the number of collectible tokens. We would like to discuss with the team whether

the logic of the function LimitOrderManager.collect() reflects the intended design.

Recommendation

We recommend adding features to collect the proportionate fees.

Alleviation

[Kromatika Team]: Kromatika team is acknowledging the recommendation and would like to describe the

solution. In the method LimitOrderManager._removeLiquidity() , Kromatika calculates the tokensOwed0

and tokensOwed1 that represents the tokens amount owed to the user from Uniswap pool, including the

fees by using the fee growth from Uniswappool:

((,, uint256uint256 feeGrowthInside0LastX128 feeGrowthInside0LastX128,, uint256uint256 feeGrowthInside1LastX128 feeGrowthInside1LastX128,, ,,))
==_pool_pool..positionspositions((positionKeypositionKey));;

tokensOwed0 and tokensOwed1 are then passed to the

internalfunction:LimitOrderManager._collect() and pass through to the _pool.collect() as

minimum amounts to be collected (see Uniswap pool.collect doc)

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642400173076

UUC-01 | Missing Error Messages

Category Severity Location Status

Coding Style Informational UniswapUtils.sol: 59, 82, 93, 134, 135, 136, 137, 138 Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is

better to provide a string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[Kromatika Team]: With the fix commit: b67ce36a150adaaa992e6810cd4bb84272552e46, Kromatika

team have added short error messages to all require statements

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=16422638294640
https://github.com/Kromatika-Finance/limit-trade/commit/b67ce36a150adaaa992e6810cd4bb84272552e46

UUC-02 | Potential Oracle Manipulation

Category Severity Location Status

Logical Issue Major UniswapUtils.sol: 63 Partially Resolved

Description

In the function quoteKROM() , timeWeightedAverageTick is used to calculate the amount of KROM token

received in exchange given a tick and a token amount. However, the timeWeightedAverageTick is fetched

using Uniswap V3 oracle given the pool address and the TWAP_PERIOD that is used to calculate the time-

weighted average. To be noticed, the TWAP_PERIOD is in units of seconds.

2323 uint32uint32 publicpublic constantconstant TWAP_PERIOD TWAP_PERIOD == 2020;;

By the current setting, the TWAP_PERIOD is a constant and it's only 20 seconds, which means the

timeWeightedAverageTick is vulnerable to oracle manipulation. The attacker could manipulate the pool for

a few seconds to further manipulate the timeWeightedAverageTick since the time weight is relatively

focused in a short period of time which makes it be easily manipulated.

Recommendation

Consider increasing the value of TWAP_PERIOD to increase the quote resilience from potential oracle

manipulation.

Alleviation

[Kromatika Team]: Fix introduced with commit: bc0f18e75c1d376f18f19dc3465197e37047c85a initializing

the TWAP_PERIOD to 1800 seconds.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642272134814
https://github.com/Kromatika-Finance/limit-trade/commit/bc0f18e75c1d376f18f19dc3465197e37047c85a

UUC-03 | Potential Price Manipulation

Category Severity Location Status

Logical Issue Major UniswapUtils.sol: 35, 122 Resolved

Description

In the function calculateLimitTicks() , Uniswap V3 pool's spot price is used to calculate the liquidity

range.

3535 ((uint160uint160 sqrtRatioX96 sqrtRatioX96,,,, ,, ,, ,, ,,)) == _pool _pool..slot0slot0(());;

The spot price of Uniswap V3 pools can be manipulated by flash loan attacks to generate a liquidity range

that favors the attacker.

In the function _amountsForLiquidity() , Uniswap V3 pool's spot price is also used to compute the

token0 and token1 value for a given amount of liquidity.

122122 ((uint160uint160 sqrtRatioX96 sqrtRatioX96,, ,, ,, ,, ,, ,,)) == pool pool..slot0slot0(());;

The spot price of Uniswap V3 pools can be manipulated by flash loan attacks to generate token values that

favor the attacker.

Recommendation

Considering using time weighted average price to reduce the effects from the pool price manipulation.

Alleviation

[Kromatika Team]: Kromatika team is acknowledging the recommendation and would like to describe the

solution. In the solution, Kromatika is implementing buy / sell limit orders by adding a single-side liquidity

on UniswapV3.Note that the function calculateLimitTicks() is getting an input

parameter:_sqrtPriceX96thatdefines the user desired liquidity range for adding liquidity, that is different

than the pool spot price:

((uint160uint160 sqrtRatioX96 sqrtRatioX96,,,, ,, ,, ,, ,,)) == _pool _pool..slot0slot0(());;

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642299988435

The smart contracts are checking that the_sqrtPriceX96input parameter is greater for sell orders (or lower

for buy orders) than the pool pricesqrtRatioX96.If that’s not the case, including the case when the pool

price has been changed / manipulated, the transaction would fail and it needs to fail, because UniswapV3

would not have accepted single-side liquidity with that pool price anyway. Using time-weighted average is

not possible, since the check needs to be done against the current pool price in order for the single-side

liquidity to be accepted by UniswapV3.

Update (Jan 31th 2022): Kromatika team with commit: f694074d5148a79938097b35111dbba965b545d4

has added a slippage (price manipulation) check introducing a minimum liquidity input parameters, based

on a similar UniswapV3 check.

Kromatika.Finance Code Security Assessment

https://github.com/Kromatika-Finance/limit-trade/commit/f694074d5148a79938097b35111dbba965b545d4

UUC-04 | Assumption Of Possitive Tick Spacing

Category Severity Location Status

Logical Issue Minor UniswapUtils.sol: 34 Acknowledged

Description

In the function calculateLimitTicks() , the tick spacing of IUniswapV3Pool _pool is returned by

_pool.tickSpacing() on line 34. The tickSpacing plays rather an essential role in the following

calculations within the contract, for example, the tickCeil is considered the ceiling of the tick range by

adding tickSpacing on the tickFloor assuming the tickSpacing is positive.

However, tickSpacing of certain pools may not be positive since the tick spacing could be defined as

negative when constructing the pool, as its type suggests int24 .

Recommendation

The audit team recommend adding certain validations on the tickSpacing of the _pool .

Alleviation

[Kromatika Finance]: Kromatika team is acknowledging the recommendation and would like to describe

the solution. There is a _floor() function when calculating the tickFloor . The tickSpacing is used to find

a liquidity range around tickFloor where a single-side liquidity is possible to be added on Uniswap.

Regardless of whether tickSpacing is negative or positive, the smart contracts are checking both the

ranges by adding or subtracting tickSpacing to determine which one is the possible single-side liquidity

range, regardless of tickSpacing being positive or negative. [tickFloor - tickSpacing , tickFloor] -

checking the one side of the liquidity range [tickFloor , tickFloor + tickSpacing] - checking the other

side of the liquidity range.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642289042283

UUC-05 | Redundant import Files

Category Severity Location Status

Coding Style Informational UniswapUtils.sol: 16 Resolved

Description

The library OracleLibrary is imported twice and can be removed.

Alleviation

[Kromatika Team]: Cone cleanup has been performed removing duplicate imports

https://github.com/Kromatika-Finance/limit-

trade/blob/1ea8112beb6663dc69d841e846c95d118043939b/contracts/UniswapUtils.sol

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1639687597480
https://github.com/Kromatika-Finance/limit-trade/blob/1ea8112beb6663dc69d841e846c95d118043939b/contracts/UniswapUtils.sol

UUC-06 | Integer Overflow/Underflow Risk

Category Severity Location Status

Mathematical Operations Informational UniswapUtils.sol: 40, 43, 46 Resolved

Description

Using + /- in the method directly to calculate the value of the variable may overflow/underflow. SafeMath

provides a method to verify overflow, and it is safer to use the method provided.

Recommendation

Consider using the add() and sub() function in SafeMath library for mathematical operations.

Alleviation

[Kromatika Team]: Team is acknowledging the recommendation and with the fix commit:

cd8b10d2e6de1c3ba1dfb99570c0c865dec2b2f9, has introduced SafeCast and SafeMath libraries from

OpenZepellin for safe mathematical and casting operations over uint256, uint128and uint32 types used in

the contract.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642271703964
https://github.com/Kromatika-Finance/limit-trade/commit/cd8b10d2e6de1c3ba1dfb99570c0c865dec2b2f9

UUC-07 | Proper Usage Of require And assert Functions

Category Severity Location Status

Coding Style Informational UniswapUtils.sol: 93 Resolved

Description

The assert() function should only be used to test for internal errors, and to check invariants since the gas

fee will not be returned. The require() function should be used to ensure valid conditions, such as inputs,

or contract state variables are met, or to validate return values from calls to external contracts.

Recommendation

Consider using the require() function, along with a custom error message when the condition fails,

instead of the assert function

Alleviation

[Kromatika Team]: With the fix commit: 66e112989600f8ff0b08dbb05de9c193d3ecf02f, Kromatika team

has replaced assert() with require() function with a custom message.

Kromatika.Finance Code Security Assessment

https://acc.audit.certikpowered.info/project/1b6bb8c0-512f-11ec-abc0-4539c5caa7cc/report?fid=1642271862519
https://github.com/Kromatika-Finance/limit-trade/commit/66e112989600f8ff0b08dbb05de9c193d3ecf02f

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

Kromatika.Finance Code Security Assessment

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Kromatika.Finance Code Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

Kromatika.Finance Code Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

Kromatika.Finance Code Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

Kromatika.Finance Code Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Kromatika.Finance Code Security Assessment

